miércoles, 8 de febrero de 2017

Control del Flujo de Corriente


El comportamiento del flujo de corriente está regido por la Ley de Ohm y sus derivaciones, que son la base del estudio de la electricidad.
Resistencias 

Todo material ofrece cierta oposición al flujo de corriente, oposición que puede ser grande o pequeña.Esta oposición se le denomina resistencia. 


EjemploHagamos una analogía para entender mejor a las resistencias. Supongamos que hay un tubo con varias pelotas de golf sujetadas fuertemente en sus sitios mediante alambres y cada una de ellas representa a un átomo con sus electrones. El espacio entre las pelotas de golf se rellena con pequeñas municiones metálicas. Cada una de esas municiones representa un electrón. Cuando se quitan municiones de un extremo y se introducen por el otro, y comienza a producirse un flujo o circulación de las mismas dentro del tubo.      

Imaginemos que cada pelota de golf estuviese recubierta por engrudo. Este engrudo no se desprendería de la pelota de golf, sino que solamente retendrá las municiones a ella. La fuerza del engrudo depende del tipo de material. Asimismo en el caso de metales, si el material es cobre (conductor), el “engrudo” será muy liviano y los electrones libres no podrán ser retenidos con fuerza. Sin embargo, si el material es vidrio (aislante),el “engrudo” será sumamente poderoso: retendrá a los electrones libres y no los dejará salir. Se necesita un empuje (voltaje), esto provocaría la salida de miles de millones de
municiones por segundo.

La resistencia de un material sería comparable a la fuerza del engrudo que acabamos de describir. la resistencia depende de:

Longitud: Si comparamos dos conductores de igual material y sección pero de diferente longitud cada uno, el de mayor longitud tiene mayor oposición al movimiento de los electrones debido a que éstos tienen un mayor camino que recorrer. Por lo que concluimos que: cuanto mayor sea la longitud del conductor, mayor es la resistencia.  

Sección: Al comparar dos conductores de igual material y longitud pero de diferente sección, notamos que en el de mayor sección existe un mayor número de electrones, por lo que circula una corriente más intensa. Concluimos que: la resistencia es menor, cuanto mayor sea la sección del conductor. 

Temperatura: Los cambios de temperatura influyen en los materiales, tanto es así, que la resistencia de los metales puros aumenta con la temperatura. Por lo que concluimos que: entre mayor sea la temperatura de un material, mayor es la resistencia de este.

Material: Una propiedad de los materiales es la conductancia y está definida como la facilidad con que un material deja fluir la corriente. A mayor conductancia mayor cantidad de corriente permitirá fluir. Como el conductor más comúnmente utilizado es el cobre, todos los metales tienen una clasificación de conductancia, que indica la eficacia con que conduce la corriente en comparación con el cobre. A esta conductancia se le llama conductancia relativa o coeficiente de conductividad. Se concluye que: cuanto mayor sea el coeficiente de conductividad que tiene el conductor, menor es la resistencia al paso de la corriente. La conductancia es la inversa de la resistencia y se mide en S ( Siemens ). En la tabla siguiente se muestra la conductancia relativa de algunos materiales.

Otra propiedad de los materiales es la resistividad o la resistencia específica. La resistividad es la resistencia que ofrece un conductor de 1 m de longitud y 1 mm2 de sección a una temperatura de 20°. A cada tipo de material le corresponde un coeficiente de resistividad, es decir, indica el grado de resistencia que opone ese material al paso de la corriente. Se representa por y se mide en [Ω. mm2/m].

La resistencia se representa con la letra R, la unidad para la medición de la resistencia es el ohm (Ω). La resistencia se representa dentro de un circuito tal y como lo muestra la figura:
Los dispositivos que se usan para aumentar la resistencia en un circuito eléctrico son los resistores. Son fabricados con materiales que ofrecen una alta resistencia al paso de la corriente eléctrica, los más comunes son el Nicromo, el Constantán y la Manganina.
                     
Código de Colores 
Existe un método estándar para saber el valor óhmico de los resistores. A este método se le conoce como código de colores. Este código está compuesto por bandas de colores divididas en dos grupos: El primer grupo consiste de tres o cuatro de estas bandas, de las cuales las primeras dos o tres indican el valor nominal del resistor y la última es un multiplicador para obtener la escala. El segundo grupo está compuesto por una sola banda y es la tolerancia expresada como un porcentaje, dicha tolerancia proporciona el campo de valores dentro del cual se encuentra el valor correcto de la resistencia, o sea, el rango o margen de error dentro del cual se encuentra el valor real de la misma. En la tabla siguiente se muestra este código junto con los valores que representan los colores.

Ley de Ohm 
La generación de una corriente eléctrica está ligada a dos condiciones: A la existencia de una fuerza propulsora, la fuerza que hemos denominado fuerza electromotriz (f.e.m). A la existencia de un circuito conductor, cerrado, que une los dos polos de la fuente de voltaje. La intensidad de la corriente depende tanto de la magnitud de la f.e.m (V), como de la resistencia del circuito (R). Esa dependencia fue precisada por el físico George Simon Ohm, quien formuló la ley más importante de la electrotecnia, llamada por eso, ley de Ohm. La ley de Ohm establece que, en un circuito eléctrico, el valor de la corriente es directamente proporcional al voltaje aplicado e inversamente proporcional a la resistencia del circuito. En otras palabras, esta ley nos dice: • A más voltaje, más corriente; a menos voltaje, menos corriente. • A más resistencia, menos corriente; a menos resistencia, más corriente. La ley de Ohm permite conocer el voltaje en un elemento del circuito conociendo su resistencia y la corriente que fluye a través de él y las relaciona de la siguiente manera:

Ejemplo:
Existe una manera sencilla de saber cuál es la fórmula que se debe utilizar en un momento dado: usando un triángulo de Ohm donde se colocan la corriente, el voltaje y la resistencia. Para utilizar el triángulo, se cubre el valor que se desea calcular y las letras restantes hacen la fórmula.
Circuitos en Serie y en Paralelo 
Las resistencias en un circuito eléctrico pueden estar dispuestas en serie o en paralelo:
Circuitos de Corriente Continua en Serie Cuando se tienen N resistencias conectadas en serie la resistencia total del circuito es igual a la suma de todas las resistencias.
Circuitos de Corriente Continua en Paralelo Se dice que varios elementos están en paralelo cuando la caída de potencial entre todos ellos es la misma. 
                         
Inductancia Así como la resistencia se opone ante el flujo de corriente, la inductancia (L) se opone al cambio del flujo de corriente. El dispositivo que cumple eficazmente esta función es el inductor, que físicamente es una bobina que tiene numerosos espiras de alambre de cobre, de un diámetro muy fino y con un forro o aislante, arrollados en un tubo de baquelita. Cuando un flujo de electrones circula a lo largo de un conductor, empieza a expandirse un campo magnético desde el eje del conductor. Las líneas de fuerza del campo magnético se mueven hacia afuera, a través del material conductor, continuando después por el aire, induciendo un voltaje en el propio conductor. Este voltaje inducido tiene siempre una dirección opuesta al de la circulación de la corriente. Debido a dicha dirección opuesta, a este voltaje se le llama fuerza contraelectromotriz (f.c.e) o f.e.m inversa. La inductancia se expresa en henrios (H) pero como es una unidad de medición grande, es más común usar sus submúltiplos milihenrios (mH, 1 x10-3 H = .001 H) y microhenrios (μH, 1 x 10-6 H = .000001 H). El efecto de la f.c.e que se crea en el conductor es el de oponerse al valor máximo de la corriente, aunque esta es una condición temporal. Cuando la corriente que pasa por el conductor alcanza finalmente un valor permanente, las líneas de fuerza dejan de expandirse o moverse y ya no se produce f. c. e. m. En el instante en que la corriente empieza a circular, las líneas de fuerza se expanden con la máxima velocidad y se produce el valor máximo de la f.c.e. En dicho instante, la f.c.e.m tiene un valor justo inferior al voltaje aplicado.
De acuerdo con la gráfica de la figura anterior, cuando la corriente empieza a circular, su valor es pequeño. Sin embargo, a medida que las líneas de fuerza se mueven hacia afuera, disminuye progresivamente el número de líneas que cortan al conductor cada segundo, por lo que también disminuye progresivamente la f.c.e.m. Después de cierto tiempo, las líneas de fuerza alcanzan su mayor expansión, deja de producirse la f.c.e.my la única f.e.men el circuito es la de la fuente de voltaje. Entonces puede circular por el alambre la corriente máxima pues la inductancia ya no reacciona contra la fuente de voltaje. 


Existen dos tipos de inductores:

Inductores fijos: A los inductores fijos no se les puede variar su valor, una vez que se han fabricado su valor permanece constante. Estos inductores pueden tener un núcleo de aire o de hierro. 
Inductores variables: A los inductores variables se les puede variar el valor de la inductancia en cierta escala. Están fabricados de manera que el núcleo se pueda mover dentro del devanado. De esta manera, la posición del núcleo determina el valor de la inductancia. 

Capacitancia 
Así como la inductancia se opone ante cualquier cambio en la corriente, la capacitancia (C ) se opone ante cualquier cambio en el voltaje. El dispositivo que introduce la capacitancia a los circuitos es el capacitor. Este dispositivo almacena energía en un campo electrostático y la libera posteriormente. Un capacitor está formado por 2 placas conductoras paralelas entre sí, separadas por una capa delgada de material aislante. A este material no conductor se le conoce como dieléctrico.


La unidad para expresar la capacitancia es el faradio (F) pero los capacitores comúnmente se clasifican en μF=1 x 10-6 (microfaradios) o pF=1 x 10-12 (picofaradios). El capacitor se representa mediante los siguientes símbolos:
Funcionamiento de un Capacitor En el instante en que se cierra el interruptor, el terminal negativo de la batería empieza a impulsar electrones a la placa superior del capacitor, así como también se extraen electrones de la placa inferior del capacitor al extremo positivo de la batería. A medida que se establece una diferencia de electrones entre las 2 placas, aparecen líneas de fuerza electrostáticas entre ellas.
A. En el momento de cerrar el interruptor no existe en el capacitor f.e.m inversa y la amplitud de la corriente viene determinada únicamente por la resistencia del circuito. Con el tiempo, entran más electrones al capacitor y se produce en él una f.e.m inversa cada vez mayor, haciendo que la corriente en el circuito vaya decreciendo. Una vez que la f.e.m inversa iguala a la de la fuente, la corriente dejará de A circular completamente.

B. Por otra parte, el capacitor no puede descargarse a través de la fuente, ya que la polaridad del voltaje de la fuente es tal que se opone al voltaje del capacitor. Debido a lo anterior, el capacitor debe contar con una trayectoria de descarga, como se muestra en la figura (corriente de descarga). En el instante tX se mueve el interruptor de manera que la fuente quede desconectada del capacitor para empezar el proceso de descarga.

Potencia Eléctrica – Ley de Joule 

Es probable que, por experiencia propia, usted ya sepa que la mayor parte de los equipos eléctricos indican su voltaje y potencia, en volts y watts. Las lámparas eléctricas de 220 volts, también indican sus watts y suelen identificarse más en watts que en volts. ¿Qué significa esta indicación en watts para los equipos eléctricos? Los watts de las lámparas eléctricas y otros equipos indican la velocidad con que la energía eléctrica se convierte en otra forma de energía, como calor o luz. Cuanto mayor sea la rapidez con que la lámpara convierte energía eléctrica en luz, mayor será su luminosidad. De este modo, una lámpara de 100 watts suministra más luz que una de 75 watts. Del mismo modo, los watts de motores, resistencias y otros dispositivos eléctricos indican la velocidad con que éstos transforman energía eléctrica en alguna otra forma de energía. Si se excede la cantidad de watts normales, el equipo o dispositivo se recalienta o se deteriora.
Ley de Joule En la aplicación práctica de este efecto, son particularmente importantes las relaciones entre las magnitudes eléctricas corriente (I), voltaje (U) y resistencia (R) con la cantidad Q de calor desarrollado. La cantidad de calor se mide en calorías. Una caloría (cal) es la cantidad necesaria para llevar a 1ºC la temperatura de 1g de agua. Joule encontró, como consecuencia de sus experiencias, que una corriente de 1 Amp desarrolla 0.239 cal en una resistencia de 1 W. Este número, determinado por la experiencia, se llama equivalente termoeléctrico. El calor desarrollado en un segundo es 0.239 U.I.cal y en un tiempo de t segundos: Establece que todo conductor recorrido por una corriente se calienta, lo cual produce el llamado "efecto calórico" de la corriente eléctrica. 
                 
                      Q = 0.239 U.I.t calorías

De acuerdo a la ley de Ohm, U = I R. Sustituyendo esta relación, se obtiene la ley de Joule en su segunda forma: Expresión que determina el calor generado en una resistencia R, por una corriente de I amperes, en un tiempo t.
                      Q = 0.239 I² x R x t calorías


Enunciados 
Ley de nodos Proviene de la conservación de la carga y dice, esencialmente, que la suma de las corrientes que llegan a un nudo es cero; es decir, que el total de corriente que entra a un nudo, es igual al total de la corriente que sale del nudo. Esta ley ha de aplicarse a tantos nudos existan en nuestro circuito, menos uno.
Ley de mallas Establece que la suma de caídas de potencial a lo largo de una malla debe coincidir con la suma de fuerzas electromotrices (de los elementos activos) a lo largo de la misma. Si no hubiera elementos activos, la suma de potenciales a lo largo de un recorrido cerrado es cero, lo cual está ligado al carácter conservativo del campo eléctrico. Para su aplicación es preciso previamente asignar un sentido de recorrido a las mallas y dar algún convenio de signos: • Una f.e.m se tomará como positiva si en nuestro recorrido salimos por el polo positivo. • Una caída de potencial se tomará como positiva si en nuestro recorrido vamos a favor de la corriente cuando pasamos por el elemento. En el circuito de la figura, las caídas de potencial son todas en resistencias óhmicas; si es I la intensidad que atraviesa a una resistencia R, la caída de potencial es IR.
Conocidos los valores de los elementos que constituyen nuestro circuito, las tres ecuaciones anteriormente expuestas configuran un sistema lineal del que se pueden despejar los valores de I1, I2 e I3. Obsérvese que en el circuito anterior R2 y R4 se asocian como si fueran una sola resistencia de valor (R2 + R4). Este es un ejemplo de cómo se asocian resistencias en serie, que son las que están en una misma rama sin importar su ubicación.
Asociación de elementos en Serie y en Paralelo Previo a analizar un circuito conviene proceder a su simplificación cuando se encuentran asociaciones de elementos en serie o en paralelo.

Serie Se dice que varios elementos están en serie cuando están todos en la misma rama y, por tanto, atravesados por la misma corriente. Si los elementos en serie son resistencias, pueden sustituirse, independiente de su ubicación y número, por una sola resistencia suma de todas las componentes. 

Paralelo Se dice que varios elementos están en paralelo cuando la caída de potencial entre todos ellos es la misma. 
La corriente por cada una de ellas es V/Ri (i=1,2,3) y la corriente total que va de A a B (que es la que atravesaría Rp cuando se le aplica el mismo potencial) será I1 + I2 + I3. Al haber tres caminos alternativos para el paso de la corriente, la facilidad de paso es mayor.






No hay comentarios:

Publicar un comentario